

3M Precision Grinding & Finishing 3M[™] Diamond Dressing Rollers

Your partner with a century of grinding experience

3M Precision Grinding & Finishing bundles the know-how and experience of the Winterthur, Slip-Naxos and WENDT brands under the umbrella brand 3M. As a part of the 3M Abrasive Systems Division, 3M Precision Grinding & Finishing is your committed and competent supplier for abrasives, tools, service and support.

3M[™] DIAMOND DRESSI

DIAMOND LAYER

TOLERANCES

TYPES

SELECTION CRITERIA

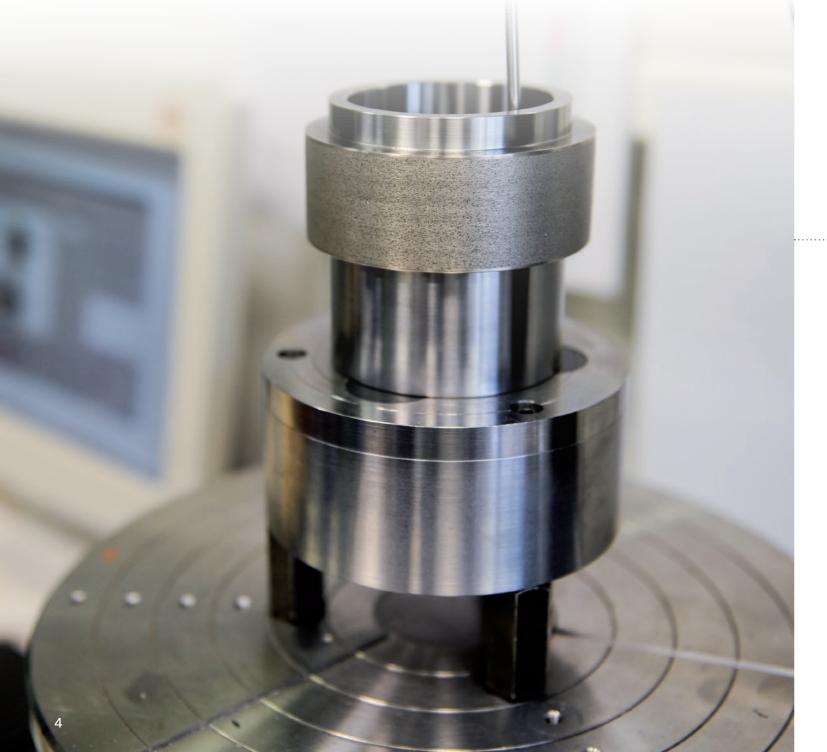
PREPARATIONS FOR US

OPERATING CONDITIO

FORM SHAPES

SALES AND SERVICE

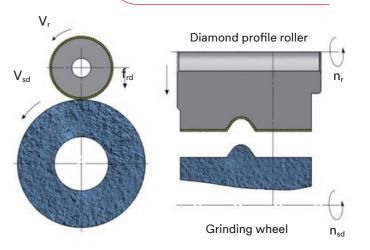
NG ROLLERS	4
	6
	8
	9
	10
SE	11
NS	12
	14
	16

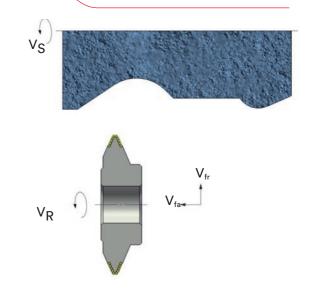

3M[™] Diamond Dressing Rollers

For every application

As an integral part of modern precision grinding technology, diamond dressing rollers are primarily used in mediumsized and mass production. On the following pages, we present a wide variety of designs of our diamond dressing tools for use in a large number of different areas of application.

We would be happy to help you with proven recommendations regarding the applications and operating conditions of our diamond profile dressing rollers and our diamond form dressing rollers.

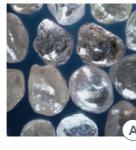


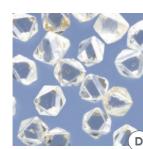

3M[™] Diamond profile dressing rollers

- To shape grinding wheels in the shortest possible time
- Profiling of the grinding wheel in only one operation using the plunge-cut dressing method
- Extreme accuracy, even with highly complex profile contours
- Highest cost-effectiveness

3M[™] Diamond form dressing rollers

- Profiling of the grinding wheel along the desired contour by moving the diamond form roller
- Extreme accuracy for simple and highly complex profile contours
- Highest cost-effectiveness


Diamond layer

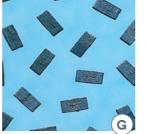

When it's really hard

The arrangement and grain density of the diamonds on the coated profile surface or in the bond is what we call the diamond pattern. Profiles exposed to heavy wear, particularly edges, are strengthened. The density of the coating is determined by distance.

Our form dressing rollers are available with hand-set or randomly distributed diamond layers, and are increasingly being equipped with polycrystalline diamond inserts that can be reground several times.

Depending on the customer's requirements, the diamond patterns of our dressing tools are specified after considering the profile geometry, the required workpiece surface quality, the precision requirements, and the operating conditions.




Various types of diamonds

- A Natural diamond grain, rounded
- B Natural diamond grain, sharp
- C Synthetic diamond grain

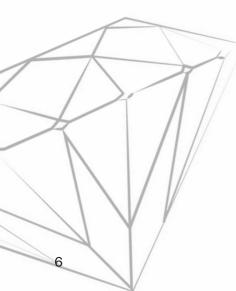
- D Natural edge reinforcement, octahedron-shaped
- E Natural edge reinforcement, needle-shaped
- F Monocrystalline synthetic edge reinforcement
- G Polycrystalline diamond inserts

The following are the determining factors for the diamond layer:

The diamond grit size

We determine the diamond grit size according to the profile geometry, the smallest convex radius present in the profile in connection with the corresponding enclosed angle, and the required surface quality of the workpiece.

The grit size can only be determined based solely on the required workpiece surface quality for profile geometries that allow edge reinforcements to be inserted for small radii. In general, the grit size should be as large as possible in order to extend the lifetime of the tools. The diamond grit size required is selected from the narrow or wide size range of the FEPA* standard for diamond grit sizes.


* Federation of the European Producers of Abrasives

The diamond content, which is specified using carats as the unit of weight (1 ct = 0.2 g), of tools manufactured using electroplating technology depends on the grit size and is calculated using the area of the surface covered with diamonds and the grain density in ct/cm². For tools manufactured using a sintering process, though, the diamond content results from the coating volume and the concentration (ct/cm³). The number of edge reinforcements and polycrystalline inserts is calculated from the mesh dimensions. Precise knowledge of the diamond content, the grit size, the diamond quality, and the edge reinforcement are especially important when comparing prices.

Screen grit sizes						
FEPA Standard (metric)			US Standard ASTM-E-11 (mesh)			
Siz	e range		Size range		Croine ner et	
narrow	wide	Screen mesh size (µm)	narrow	wide	Grains per ct	
D1181	D1182	1180 - 1000	16 / 18		< 100	
D1001	DTI62	1000 - 850	18 / 20		~ 200	
D851	D852	850 - 710	20 / 25	20/30	~ 300	
D711	D032	710 - 600	25 / 30		~ 400	
D601	D602	600 - 500	30 / 35	20/40	~ 700	
D501	D002	500 - 425	35 / 40	30/40	~ 1200	
D426	D427	425 - 355	40 / 45	40/50	~ 2000	
D356	D421	355 - 300	45 / 50	40/50	~ 4000	
D301		300 - 250	50 / 60		~ 6000	
D251	D252	250 - 212	60 / 70	60/80	~ 8000	
D213	D232	212 - 180	70 / 80	00/80	~ 17000	
D181		180 - 150	80 / 100		~ 25000	
D151		150 - 125	100 / 12		~ 50000	

The following generally applies ...

... the denser the diamond pattern, the sharper the grain, i.e. naturally shaped grains are used for random diamond patterns and rounded grains are used for hand-set diamond patterns.

The diamond content

The diamond quality

We use naturally shaped or rounded natural or synthetic grains in our dressing tools. The base grains consist of block-like, high-strength crystals with an irregular surface that gives them outstanding bonding properties and prevents grain pull-out.

Needle-shaped or octahedronshaped natural diamonds are used for edge reinforcement, but we also use monocrystalline synthetic diamonds. The latter are also used to manufacture highly wear-resistant and thermally stable form dressing rollers. The diamond quality is specified based on the diamond pattern and the processing conditions while taking the effective roughness the grinding wheel into account.

7

Tolerances

Exact, accurate & precise

The tolerances

The manufacturing precision of our diamond dressing rollers is generally 2/3 of the workpiece dimensional tolerances and form tolerances (table to the right). It is possible for use to manufacture our dressing tools with very tight tolerances, but the following applies: the lower the tolerance, the higher the price.

Our diamond profile dressing rollers and diamond form dressing rollers are balanced according to DIN ISO 1940 with a quality grade of G1.

Product Code	3M™ 6HGN 3M™ 6JGN	3M™ 6JMI	3M™ 6HGP 3M™ 6JGP	3M™ 6HMS	Symbol	
Type Designation	NZ	IZ Dimensic	PM on in mm	SM	Syn	
Parallelism	0.002	0.002	0.005	0.005	//	Profil / t A
Peripheral runout	0.002	0.002	0.005	0.005		
Side runout	0.002	0.002	0.005	0.005		
Run-out	0.004	0.004	0.01	0.02		
Cylindricity	0.004 (0.002)	0.004 (0.002)	0.01	0.02	þ	
Planeness	0.004	0.004	0.01	0.02		
Linear shape	0.004 (0.002)	0.01 (0.003)	0.01	0.02	\cap	*
Radius	± 0.002 (± 0.001)	± 0.004 (± 0.003)	± 0.025	± 0.025	R	C P
Angle	0.004 (0.002)	0.004 (0.002)	0.01	0.01	_	B
Length	± 0.002 (± 0.001)	± 0.002 (± 0.001)	± 0.025	± 0.025	L _A ¹⁾ L _R ¹⁾	1.
Length with	± 0.01	± 0.01	± 0.025	± 0.025	L_{AS}^{_{(2)}}	
set of rollers	(± 0.003)	(± 0.005)			L_ _{RS} ²⁾	
	± 0.002	± 0.01	± 0.05	± 0.05	ĸS	

¹⁾ L_A=Axial length ; L_B=Radial length

²⁾ L_{Ac} = Axial length with sets of rollers ; L_{Bc} = Radial length with sets of rollers

Types

Reverse electroplated

- NZ type (randomly distributed diamonds)
- NS type (hand-set diamonds)
- NM type (hand-set/randomly distributed diamonds)

To electroplate these tool types during the manufacture of the tools using the reverse electroplating method, a metal female mold with the reverse image of the dressing roller is produced first. The diamond grains are placed on surface of the profile (randomly distributed for the NZ type, hand-set for the NS type, hand-set/randomly distributed for the NM type). On all dressing tools manufactured using the reverse electroplating method, the diamonds lay on the enveloping surface of the profile

Reverse infiltrated

- IZ type (randomly distributed diamonds)
- IS type (hand-set diamonds)

To manufacture these very robust tools made using the reverse electroplating by infiltration method, a graphite mold with the reverse image of the profile of the dressing roller is produced. The shrinkage inherent in the process needs to be taken into account when making the mold. The diamond grains are placed on the surface of the profile (randomly distributed for the IZ type, hand-set for the IS type).

Positive electroplated • PM type (randomly distributed diamonds)

Tools of this type are manufactured using the positive electroplating process. A steel hub bears the profile the dressing roller reduced by an amount equal to the size of the diamond grains. The diamond grit is then placed on the surface of the hub profile and electroplated with nickel. The diamond grains are on single plane on the hub. Due to variations in size of the diamond grains, the active surface of the dressing roller is rough and uneven.

Sintered

• SM type (diamond interspersed)

To manufacture these tools using the sintering process, a prefabricated dressing roller body is mounted in a press mold made of hot work tool steel. The diamond coating, a mixture of diamond grains and bonder, is poured into the mold, compacted at high pressure, and sintered at high temperature.

After cooling, the tool is carefully finished until the final shape is reached and the diamond grains are exposed. In contrast to all other types that have a coating thickness corresponding to the grain size, with this type a coating

so that each grain actively participates in the dressing process and enable the longest possible lifetimes. Tools of these types allow even the tightest tolerances to be maintained and are used as a standard for all types of profiles, and especially for very fine profiles.

They are also used when a high effective roughness is desired. The NM type is used increasingly to grind workpieces that tend to burn when grinding certain parts of the profile.

These types allow tight tolerances to be maintained, but there are some profile-dependent restrictions for the IZ type, although the IZ type has the advantage of shorter manufacturing times. The IS type is recommended for profiles with featuring high, narrow ribs that cannot be electroplated.

Tools of this type are therefore extremely aggressive and have the highest effective roughness. Dressing rollers manufactured using the positive electroplating process are not used in applications with high precision requirements and feature lower manufacturing costs and high efficiency since the hub can be recoated several times.

thickness of several times the diamond grain size is possible. In general, thickness of 2, 3, or 5 mm are used in applications. Dressing rollers of this design are used for simple profiles without high precision requirements and are applied so that the original shape is retained for a long time. They are sharpened occasionally to achieve longer tool lifetime. In the form of dressing rollers or dressing cups, they are suitable for dressing ceramicbonded CBN grinding wheels.

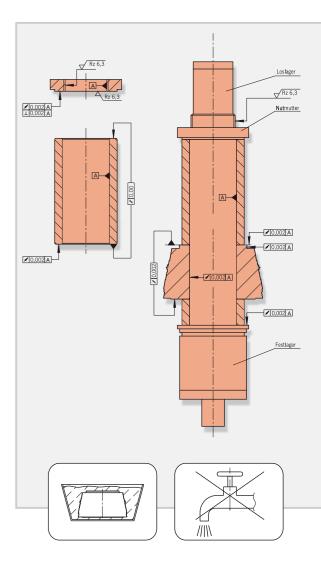
Selection criteria

The right tool for every application

As an orientation aid, we have collected the essential features and characteristics of our most important types of tools:

Product Code			3M™ 6H 3M™ 6J			6HMI 6JMI	3M™ 6HGP 3M™ 6JGP	3M™ 6HMS
Туре		NZ	NS	NM	IS	IZ	PM	SM
Manufacturing	Reverse method							
process	Positive method							
	Electroplated nickel							
Bond	Infiltrated tungsten							
	Sintered bronze							
	Randomly distributed	And see				in se		
	Hand-set							
	Hand-set/randomly distrib	outed						
D'anna dha a	Saturated							
Diamond layer	Edge reinforcement							
	Polycrystalline shape							
	≥ D15 Grain size	51						
	Grain size ≥ D6	02						
Highest execution	on accuracies			•				
Finest profiles								
Profile with high, narrow ribs								
Highly robust								
High effective roughness								
Partial avoidance of grinding burn								
Shortest delivery times								

Preparations for use


The installation

The proper installation of a diamond dressing roller has a major influence on the dressing/grinding results and the lifetime of the dressing tool. We recommend you install the tool according to the following rules:

- Check for cleanliness and clean all components, if necessary.
- Check to ensure the surfaces of the arbor, the spacer ring, and the clamping nut are in perfect condition. Pay special attention to any friction deposits or machining marks present.
- Check the parts to be mounted to ensure the manufacturing tolerances are maintained. The actual size of the dressing roller hole can be found in the test report. The determination and maintenance of the minimum tolerance clearance is especially important in this regard.
- Test of the concentricity and axial run-out of the grinding wheel arbor. The maximum permissible run-out error is 0.002 mm.
- Clean the parts to be mounted with a towel soaked in acid-free oil so that a thin film of oil remains on the parts. Avoid leaving fingerprints on the connection points.
- Push the parts carefully in the specified order, and, only by moving them in the axial direction, onto the arbor.

Installation is much easier if the dressing roller is warmed up in an oil or water bath. The maximum permissible temperature is 40°C. Do not warm the dressing roller under running water. After installation is completed, conduct a test of the radial and axial run-out of the dressing roller on the arbor and again on the corresponding test collar after installation in the machine. If the values of radial and axial run-out deviation are greater than 0.005 mm, then the dressing roller must be reinstalled, taking the points stated into account.

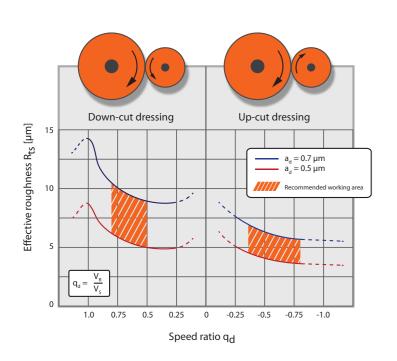
Operating conditions

We know how to do it

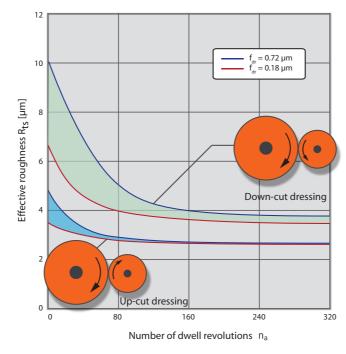
The ability to influence process-relevant factors such as the operating conditions, configuration of the axes, speed ratio, direction of rotation, infeed, and rollout when profiling with diamond profile dressing rollers offers numerous opportunities for optimization of the results.

When profiling with form dressing rollers, it is also possible to specifically influence the topography on the grinding wheel and optimize the results by matching the individual factors such as the working conditions, infeed per overflow, speed ratio, direction of rotation, feed rate, etc.

Influencing factors that can be coordinated:


Direction of rotation

Down-cut and up-cut dressing refers to the relative direction of rotation of the diamond dressing roller with respect to the grinding wheel. They have correspondingly different effective roughnesses (Diagram 1). Since down-cut dressing is associated with high effective roughnesses, it is used for high


performance profiling of rough grinding wheels and fine grinding of critical profiles that have a tendency to burn when grinding. By changing the speed ratio, it is possible to have a greater influence on the effective roughness than with upcut dressing. Up-cut dressing, which is associated with a lower effective roughness, is used for fine grinding

wheels used to grind non-critical profiles that do not tend to burn during grinding.

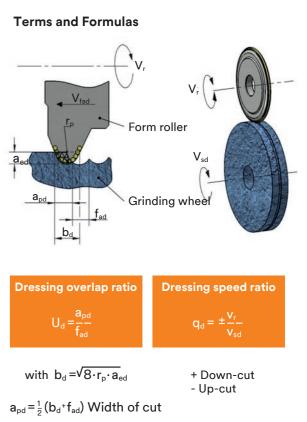
3M[™] Diamond profile and form dressing rollers Diagram 1

Speed ratio (q_)

The greatest influence on the effective roughness is obtained by changing the speed ratio q, which is the quotient of the circumferential speed of the dressing roller V_p to the circumferential speed of the grinding wheel $V_{\scriptscriptstyle C}$ (Diagram 1: Down-cut and up-cut dressing at different feed increments). Speed ratios of 1 or almost 1 are not permitted since they indicate that the diamond dressing roller is either dwelling on the grinding wheel or that the dressing roller is prematurely worn or damaged.

Axial feed rate (v)

Another working parameter required when using diamond form dressing rollers is a feed movement with velocities in the axial or tangential direction. As the feed rate increases (in down-cut dressing more than in up-cut dressing), the effective roughness increases. Since the feed rate depends on the combination of the application and working conditions, we can only specify 100-300 mm/min as a standard value for rough grinding and 30–100 mm/min for finishing grinding.

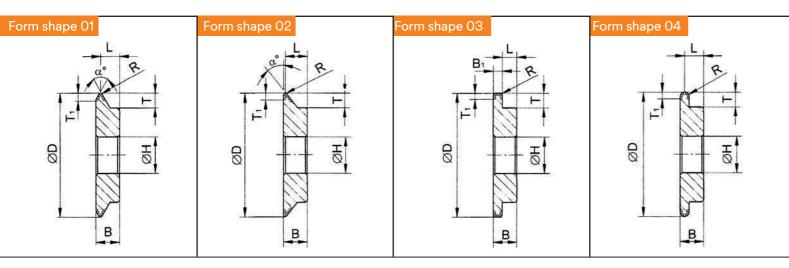

Dwell revolutions (n_)

The effective roughness is also influenced by the number of dwell revolutions (n.). As the number of revolutions increases (for down-cut dressing more than for up-cut dressing), the effective roughness decreases (Diagram 2). At about 150 dwell revolutions for down-cut dressing and 50 dwell revolutions for up-cut dressing, it becomes impossible to minimize the values any further. While the number of dwell revolutions needs to be kept low in cases where there is a tendency of grinding burn, they should be increased when the surface roughness values of the workpiece are high. (All values were determined in fixed systems with specific machine and equipment stiffness values, but are still useful in a general sense.)

Infeed (a)

Our parameter for the infeed is the radial feed increment $a_d(\mu m)$ of the diamond dressing roller per revolution of the grinding wheel. As the infeed increases (for down-cut dressing more than for up-cut dressing), the effective roughness increases (Diagram 1). The recommended feed increments are between 0.25 – 0.5 µm per revolution of the grinding wheel. The total infeed selected should always be as small as necessary to restore the grinding wheel profile (generally < 0.03 mm). When continuous dressing (CD), the tool is fed continuously at a rate of up to 0.2 µm per revolution of the grinding wheel.

When profiling with diamond form dressing rollers, the feed increment depends mainly on the type of form dressing roller, the desired grinding wheel profile, the cutting conditions, and whether you are rough grinding or finishing grinding. Due to the numerous combinations of the application and working conditions, we can only specify 0.1-0.5 mm as a standard value for rough grinding and 0.005–0.05 mm for finishing grinding.


\mathbf{a}_{pd}	Width of cut	in mm
\mathbf{a}_{ed}	Dressing infeed	in µm
\boldsymbol{b}_{d}	Effective width of the dressing tool	in mm
\mathbf{f}_{ad}	Dressing infeed per revolution	in mm/U
V_{fad}	Axial feed rate	in mm/min
Vr	Dressing roller circumferential speed	in m/s
V_{sd}	Grinding wheel circumferential speed	in m/s
r _p	Profile radius of the form roller	in mm

Form shapes

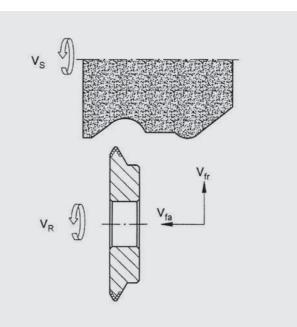
Form dressing rollers

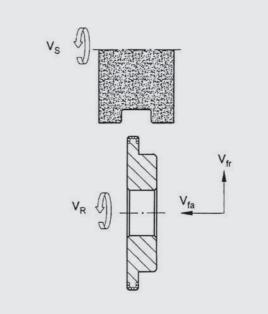
Since the introduction of CNC-controlled dressing processes, a large number of diamond form dressing rollers have entered the market, making it difficult or impossible to get oriented in the market. With our form dressing roller standard, we strive to reduce the number of different types to a reasonable size to enable efficient storage and inexpensive manufacturing of the tools. In this manner, we contribute to the economical optimization of our customers' grinding processes.

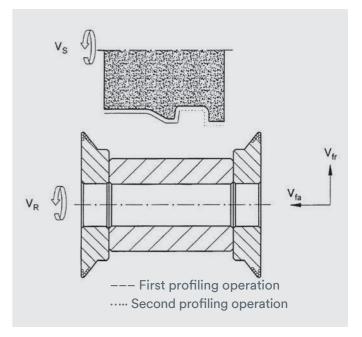
Form roller	D	В	Т	L	н
	150	20	15	The actual	52
U75B	125	15		reference dimension is specified in the	52
	100				40
	75	10		test report.	10

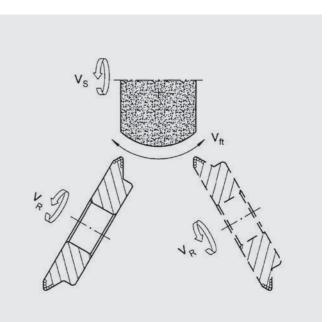
Form shape	01 02 03	04	01 02	01 02 03 04	03	01 02 03 04
Туре	ŀ	२	m	T1	B1	min. 🦳
NZ	0.3	3	40°	R+1	6	0.003
NS	0.5	3	40°	R+1	6	0.005
IZ	0.3	1	30°	R+1	2	0.01
IS	0.5	1.5	40°	R+1	3	0.01 (0.003)
SM	0.5	1	30°	4	2	0.02

Other form shapes or dimensions available on request


All data in mm.


Sample order:


ЗM	Form shape	D	Туре	
U75B	02	100	NZ	


Methods of Application

Different types of form dressing rollers are needed depending on desired grinding wheel profile.

Sales and Service

We offer more than good products

Request, creation of an offer

To allow us to create the technically and economically optimal offer, we request you to provide detailed information on the dressing task and operating conditions of the desired dressing tool on our data sheet for requesting an offer. We can also create an offer based on existing tool or workpiece diagrams.

Prices

The prices of our dressing tools are based primarily on the following criteria:

- Precision requirements
- Design type
- Diamond quality
- Diamond content
- Amount of engineering and manufacturing work required
- Total scope of delivery

First order

You only need the offer number to place the order. If there should be any changes, then a current drawing will also be needed.

Repeat/follow-up order

You only need the article number to place an order.

Scope of delivery

- Test report in the form of a detailed manufacturing drawing
- Test coupon for profiles manufactured using the reverse plating method
- Secure packaging in a wooden box placed inside a larger box
- Free advice and consulting

Lifetime

The life expectancy of our dressing rollers can vary greatly depending on the type selected, the application, and the working conditions so that we can only provide figures based on experience:

Grinding of workpieces with a normal level of complexity in terms of the profiles and tolerances as well as average mean surface qualities: 50,000 – 200,000 dressing operations.

Grinding of workpieces with fine profiles, low tolerances, and high surface qualities: 5,000-50,000 dressing operations.

Wendt GmbH 3M Abrasives Fritz-Wendt-Str. 1 40670 Meerbusch Germany Tel.: +49 2159 671-0 Concept and Layout: Werbeagentur friends without partners GmbH & Co. KG, Dortmund